ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Masayuki Tokitani, Yukinori Hamaji, Yutaka Hiraoka, Yuki Hayashi, Suguru Masuzaki, Hitoshi Tamura, Hiroyuki Noto, Teruya Tanaka, Tatsuya Tsuneyoshi, Yoshiyuki Tsuji, Gen Motojima, Hiromi Hayashi, Takanori Murase, Takeo Muroga, Akio Sagara, Tomohiro Morisaki
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 651-661
Research Article | doi.org/10.1080/15361055.2023.2176184
Articles are hosted by Taylor and Francis Online.
A novel method, called Advanced Multi-Step Brazing, was developed to fabricate a new type of divertor heat removal component with W armor and an oxide-dispersion-strengthened copper (GlidCop®) heat sink in the initial phase of our work. Later, a new type of divertor heat removal component, which has a rectangular-shaped cooling channel with a V-shaped staggered-rib structure in the GlidCop heat sink, was developed. This new component showed an extremely high heat removal capability during a ~30 MW/m2 steady-state heat loading condition in our previous work. In this work, the new component was installed in the divertor strike position of the Large Helical Device and exposed to neutral beam injection–heated plasma discharges with 1180 shots (~8000 s) in total. Though submillimeter-scale damage, such as unipolar arc trails and microscale cracks, was identified on the W surface, the extremely high heat removal capability did not show any sign of degradation over the experimental period. On the other hand, remarkable sputtering erosion and redeposition phenomena, due to the strong influx of the divertor plasma, was confirmed on the W armor.