ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Yansong Liu, Tao Wang, Guo Chen, Jun Xie, Qi Wang, Zhibing He
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 641-650
Research Article | doi.org/10.1080/15361055.2023.2175599
Articles are hosted by Taylor and Francis Online.
In inertial confinement fusion (ICF) experiments, high-density carbon (HDC) is being evaluated as an alternative to the current point-design ablator material (glow discharge plasma) due to its high density and optimal opacity, which leads to a higher energy efficiency and implosion stability. Chemical vapor deposition–coated HDC capsules have a near-perfect surface figure but a microscopically rough surface, so polishing is needed to achieve the required nanometer surface finish. Herein, HDC capsule polishing is investigated with modified four-cup-type polishing technology. The surface morphology, microstructures, and wall thicknesses of the polished capsules were examined by multiple techniques, such as an optical microscope, scanning electron microscope, X-ray radiography, and so on. The results show that the HDC capsules can be polished to a surface roughness less than 15 nm and a wall thickness nonuniformity of about 0.5 μm. The Raman spectra indicated that four-cup polishing had no obvious influence on the original surface crystallinity and phase composition of the HDC capsules. The crystallographic of the HDC capsules with different four-cup polishing times had no deterioration. This work plays an important role for the application of HDC capsules in ICF research.