ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yansong Liu, Tao Wang, Guo Chen, Jun Xie, Qi Wang, Zhibing He
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 641-650
Research Article | doi.org/10.1080/15361055.2023.2175599
Articles are hosted by Taylor and Francis Online.
In inertial confinement fusion (ICF) experiments, high-density carbon (HDC) is being evaluated as an alternative to the current point-design ablator material (glow discharge plasma) due to its high density and optimal opacity, which leads to a higher energy efficiency and implosion stability. Chemical vapor deposition–coated HDC capsules have a near-perfect surface figure but a microscopically rough surface, so polishing is needed to achieve the required nanometer surface finish. Herein, HDC capsule polishing is investigated with modified four-cup-type polishing technology. The surface morphology, microstructures, and wall thicknesses of the polished capsules were examined by multiple techniques, such as an optical microscope, scanning electron microscope, X-ray radiography, and so on. The results show that the HDC capsules can be polished to a surface roughness less than 15 nm and a wall thickness nonuniformity of about 0.5 μm. The Raman spectra indicated that four-cup polishing had no obvious influence on the original surface crystallinity and phase composition of the HDC capsules. The crystallographic of the HDC capsules with different four-cup polishing times had no deterioration. This work plays an important role for the application of HDC capsules in ICF research.