ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yilong Li, Tong Zhou, Shili Jiang, Xinxing Qian
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 630-640
Research Article | doi.org/10.1080/15361055.2023.2169026
Articles are hosted by Taylor and Francis Online.
The monoblock divertor target plate (MDTP) is a mainstream divertor target plate. MDTP was installed in EAST and in WEST and will be used in ITER. Local high-temperature hot spots (HS) were observed on MDTP during a plasma experiment. HS will reduce the lifetime of MDTP. In this paper, the causes of HS on MDTP are determined through theoretical analysis and are verified by numerical simulations. The HS on MDTP seem to be caused by small high-density heat load areas on the toroidal and poloidal direction surfaces facing the incident direction of the plasma strike line (PSL) of the MDTP tungsten block. When toroidal HS and poloidal HS appear simultaneously, a super local high-temperature HS will be formed at the corner (facing the incident direction of PSL) of the MDTP tungsten block. The HS on MDTP can be eliminated by optimizing the geometry of the MDTP tungsten block, when the plasma configuration is determined. A method and the scope of application of the method, which can be used for tungsten block geometry optimization, are given in this paper. In order to facilitate the selection of a divertor configuration, the heat flux–carrying performance of the optimized MDTP was evaluated. In order to attain a maximum temperature within MDTP of less than 900 K, it was found that if the poloidal incidence angle between PSL and MDTP can be stably controlled as 5 deg (or 35 deg), MDTP can directly withstand PSL with a peak heat flux density of no more than 90 (or 40 ).