ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Changle Liu, Lei Li, Yu Zhou, Peng Zhang, Jun Song, Songtao Wu
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 610-615
Technical Note | doi.org/10.1080/15361055.2022.2162795
Articles are hosted by Taylor and Francis Online.
One of the goals of fusion blanket design is to explore the blanket material design to maintain the characteristics of the internal temperature field. This is because the characteristics of the temperature field have an important influence on the effectiveness of tritium release for the blanket. In this work, the influence of material design on temperature field characteristics is studied based on a multizone structure blanket model. It mainly focuses on the positions of the breeders, the multipliers, and the structural steel, including their material proportions in the blanket interior. It was found that the temperature field in the pure breeder region Li4SiO4 is relatively independent and has little influence on the adjacent regions because its location is closer to the first wall. The first beryllium zone only affects the adjacent regions and will not repeatedly affect the remote areas. The second beryllium zone and the first mixed-pebble zone of the Li/Be zone are mainly limited to the structural materials due to the sensitivity of the temperature limitation of 550°C. This work will have very important support and reference for future fusion blanket engineering.