ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Henri Weisen, Jari Varje, Paula Sirén, Zamir Ghani, JET Contributors
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 602-609
Rapid Communication | doi.org/10.1080/15361055.2022.2164145
Articles are hosted by Taylor and Francis Online.
Two related methods for inverting line-integrated measurements are presented in this research paper in the context of the recent deuterium-tritium experiments in the JET tokamak. Unlike traditional methods of tomography, these methods rely on making use of a family of model distributions defining a functional space within which a solution of the inversion problem is expected to exist. This is a stronger assumption than that underlying traditional methods of tomography and requires that suitable models for the expected distribution be available. In return, the methods offer computationally efficient and robust reconstructions. Regressive tomography, as applied to the data from the JET neutron cameras, involves calculating a set of 100 or more two-dimensional (2-D) neutron emission distributions in a representative variety of conditions using the ASCOT and AFSI Monte Carlo fast ion orbit and fusion reaction codes. The distributions are line integrated to represent synthetic measurements from the 19 channels of this two-camera system. An inversion matrix is then obtained by regressing the 2-D distributions corresponding to each of the voxels against these line integrals. The second method, direct regressive reconstruction, bypasses the calculation of line integrals altogether by regressing experimental camera data against calculated neutron emission distributions. This method does not require the cameras to be calibrated, not even relatively between channels. The inversion matrices obtained by any of the two methods can then be used to provide neutron emission profiles for which ASCOT/AFSI calculations are not available.