ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Eric Lang, Chase N. Taylor, Nathan Madden, Trevor Marchhart, Charles Smith, Xing Wang, Jessica Krogstad, J. P. Allain
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 592-601
Technical Paper | doi.org/10.1080/15361055.2022.2164444
Articles are hosted by Taylor and Francis Online.
Tungsten is the material of choice for plasma-facing components in the divertor region of future nuclear fusion reactors. Exposure to low-energy helium ion irradiation results in microstructural changes as helium is trapped at defects in the tungsten matrix. High-temperature exposure results in the formation of helium bubbles in the subsurface. Dispersion-strengthened tungsten materials are tungsten-based materials with added transition metal carbides to alter the impurity distribution and grain structure. In this work, the thermal release of helium from dispersion-strengthened tungsten is investigated. After irradiation at 1073 K to a 1024 m−2 fluence, thermal desorption spectroscopy was performed to elucidate the helium trapping and desorption behavior. Post-desorption microscopy was performed to correlate the microstructural changes with helium release spectra. The amount of desorbed helium was highest in the 1.1 and 5 wt% alloys, and significantly lower in the 10 wt% alloys. Helium bubbles were observed in the pure tungsten and 1.1 wt% alloys within the tungsten grains. Correlating the composition with helium release spectra revealed the importance of tailoring grain size and oxide vacancy concentrations by varying the dispersoid content on the helium retention and release behavior. These first results of helium desorption from dispersion-strengthened tungsten indicate compositionally dependent retention and reveal the need to examine helium retention in advanced tungsten alloys under reactor-relevant exposure.