ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sumei Liu, Qigang Wu, Mingzhun Lei
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 567-577
Technical Paper | doi.org/10.1080/15361055.2022.2157185
Articles are hosted by Taylor and Francis Online.
A loss of vacuum accident (LOVA) occurs during in-vessel component failure and air ingress. The airflow characteristics of a LOVA are determined by many factors like initial pressure, location of a break, and size of a break and have a great impact on dust migration, which could cause a serious explosion with incoming air and H2. In this paper, a computational fluid dynamics method is adopted, and the k-ε Shear Stress Transport model for airflow and the Discrete Phase Model for dust are used to simulate a LOVA with the updated Chinese Fusion Engineering Test Reactor (CFETR) tokamak device. The effects of initial pressure, break size, and break location on airflow during the LOVA are discussed, and the effects of dust size, break size, and break location on dust migration during the LOVA are investigated as well. The results indicate that the initial pressure and size of a break have a greater impact on airflow of a LOVA than the location of the break and that both the dust size and the characteristics of the airflow have a greater impact on the distribution of the dust. A break located in the upper port has even more dust chaos. This research is the basis for the safety analysis of the CFETR device, and it provides a reference for subsequent studies on dust removal, mitigation of dust explosions, and radioactive substances.