ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Xi Deng, Ge Gao, Yan Rao, Li Jiang, Chenguang Wan
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 517-527
Technical Paper | doi.org/10.1080/15361055.2022.2149205
Articles are hosted by Taylor and Francis Online.
The power electronic devices of ITER will bear a magnetic field strength of more than 5 mT, which may affect the operation of the devices and cause different degrees of damage to the devices. Therefore, these power electronic devices need a magnetic field anti-interference test. The core of the test facility is a magnetic field coil. First, the mathematical models of two-coil and multicoil systems considering the cross section are established. The general formula, optimization design objective, and optimization design process of the coil parameters are obtained, and the optimization scheme of the optimal solution is determined. Then, the multicoil systems are analyzed according to the actual design requirements and the actual site conditions. Some parameters that play a major role are used in the magnetic field distribution as variables to analyze and select the appropriate coil structure. Finally, the four-coil-group system with equal side lengths is applied as the coil structure based on the design requirements, power loss, weight, and manufacturing difficulty. Finite element software simulation results and experimental results prove the feasibility and correctness of the theoretical analysis.