ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Isao Murata, Shingo Tamaki, Sachie Kusaka, Indah Rosidah Maemunah, Fuminobu Sato, Hiroyuki Miyamaru, Shigeo Yoshida
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 465-475
Technical Paper | doi.org/10.1080/15361055.2022.2151280
Articles are hosted by Taylor and Francis Online.
A fusion reactor is known as a neutron-rich nuclear energy source. In this paper, neutrons are utilized to form an epithermal neutron irradiation field for boron neutron capture therapy (BNCT). Using the International Thermonuclear Experimental Reactor (ITER) facility, a beam shaping assembly (BSA) was designed and placed just before the biological shield. Treatments were planned to be carried out just outside the biological shield. An opening was prepared in the vacuum vessel to guide deuteron-triton neutrons to the BSA. The BSA is about 1 m in thickness, and on the outside surface of the BSA, an epithermal neutron flux of 1 × 109 n/s‧cm−2 was aimed. As a result of the design, the irradiation field successfully met the design criteria of the BSA advocated by the International Atomic Energy Agency. The BSA moderator consists of a first filter of 45-cm-thick iron and a second filter of 70-cm-radius and 40-cm-thick AlF3. The epithermal neutron beam was available for diameters from 10 to 20 cm to cope with various sizes of tumors. Also, a titanium layer was specially introduced to remove fast neutrons just above 10 keV to reduce the fast neutron contribution. In addition, a caldera-shaped collimator was set just outside of the BSA to form a broad beam and to make the current-to-flux ratio larger than 0.7. It was shown from the present design that the performance was confirmed to be excellent compared to other BNCT facilities available at present, meaning that even deep-seated cancer treatment could be realized in the future in ITER.