ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dmitry I. Kavyrshin, Sergey D. Fedorovich, Viacheslav P. Budaev, Quang Vinh Tran, Alexey V. Karpov, Valery F. Chinnov, Michael V. Lukashevsky, Konstantin A. Rogozin, Alexey A. Konkov, Evgeniya А. Muravieva, Alexey S. Myazin, Alexey G. Ageev
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 421-431
Technical Paper | doi.org/10.1080/15361055.2022.2138085
Articles are hosted by Taylor and Francis Online.
Plasma-surface interaction and high heat flux on plasma-facing materials in magnetic fusion devices cause surface ablation and degradation, while the influx of eroded materials into plasma can have a shielding effect. The reduction of the power load due to the plasma detachment effect over tungsten fuzz is an important phenomenon to be investigated for the ITER divertor problem. Measuring near-wall plasma parameters is a challenging task, requiring the development of improved and advanced techniques, including high-resolution spectroscopic methods. In this paper, we present study results of steady-state plasma over tungsten fuzz formed in plasma linear multicusp (PLM). The PLM device is a linear plasma trap composed of an eight-pole multicusp magnetic field with steady-state plasma discharge with parameters similar to the scrape-off layer and divertor plasma in a tokamak.
We used spectroscopic measurements to estimate spatial distributions of plasma radiation in the vicinity of the sample surface exposed to the plasma column. Thus, we obtained information on the temperature and composition of the boundary layer plasma and the temperature of the sample surface. Helium plasma exhibits ionization-type nonequilibrium even at atmospheric pressure, necessitating the use of specific methods to estimate its electron temperature Te. When the helium ion spectral line He II 468.5 nm is present in the spectra, its intensity ratio to one of the atomic lines He I can be described by using coronal approximation. Spectrum analysis has shown that emitting helium ions are highly sensitive indicators of average electron energy = 3kTe/2. Therefore, utilizing intensity ratios of the strongest emitting lines in the ultraviolet-visible near-infrared range, He II 468.6 nm and several He I lines with well-known electron excitation functions were found to be a reliable Te measurement method in the case of magnetized low-pressure helium plasma. We also propose a method for determining the concentrations of the metallic admixture in the plasma on the data on relative intensities of its spectral lines.