ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Dmitry I. Kavyrshin, Sergey D. Fedorovich, Viacheslav P. Budaev, Quang Vinh Tran, Alexey V. Karpov, Valery F. Chinnov, Michael V. Lukashevsky, Konstantin A. Rogozin, Alexey A. Konkov, Evgeniya А. Muravieva, Alexey S. Myazin, Alexey G. Ageev
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 421-431
Technical Paper | doi.org/10.1080/15361055.2022.2138085
Articles are hosted by Taylor and Francis Online.
Plasma-surface interaction and high heat flux on plasma-facing materials in magnetic fusion devices cause surface ablation and degradation, while the influx of eroded materials into plasma can have a shielding effect. The reduction of the power load due to the plasma detachment effect over tungsten fuzz is an important phenomenon to be investigated for the ITER divertor problem. Measuring near-wall plasma parameters is a challenging task, requiring the development of improved and advanced techniques, including high-resolution spectroscopic methods. In this paper, we present study results of steady-state plasma over tungsten fuzz formed in plasma linear multicusp (PLM). The PLM device is a linear plasma trap composed of an eight-pole multicusp magnetic field with steady-state plasma discharge with parameters similar to the scrape-off layer and divertor plasma in a tokamak.
We used spectroscopic measurements to estimate spatial distributions of plasma radiation in the vicinity of the sample surface exposed to the plasma column. Thus, we obtained information on the temperature and composition of the boundary layer plasma and the temperature of the sample surface. Helium plasma exhibits ionization-type nonequilibrium even at atmospheric pressure, necessitating the use of specific methods to estimate its electron temperature Te. When the helium ion spectral line He II 468.5 nm is present in the spectra, its intensity ratio to one of the atomic lines He I can be described by using coronal approximation. Spectrum analysis has shown that emitting helium ions are highly sensitive indicators of average electron energy = 3kTe/2. Therefore, utilizing intensity ratios of the strongest emitting lines in the ultraviolet-visible near-infrared range, He II 468.6 nm and several He I lines with well-known electron excitation functions were found to be a reliable Te measurement method in the case of magnetized low-pressure helium plasma. We also propose a method for determining the concentrations of the metallic admixture in the plasma on the data on relative intensities of its spectral lines.