ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Alexei Yu. Chirkov, Semion A. Tokarev
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 413-420
Technical Paper | doi.org/10.1080/15361055.2022.2135337
Articles are hosted by Taylor and Francis Online.
The formation of the spectrum of ions leaving the Z-pinch constriction during its compression is considered in the framework of the thermal mechanism corresponding to collisional regimes at high density. This mechanism refers to the heating of all ions due to compression without consideration of the electromagnetic acceleration of any selected group of ions. It is shown that such conditions can be implemented in relatively high-density regimes in which the product of precompression density and radius is n0a0 ≫ 1024 m–3. Neutron yield is analyzed. Possible parameters of a fusion reactor based on a high-density Z-pinch are estimated and found to be extremely high in terms of today’s technology.