ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Victor V. Kuzenov, Sergei V. Ryzhkov
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 399-406
Technical Paper | doi.org/10.1080/15361055.2022.2112037
Articles are hosted by Taylor and Francis Online.
This paper is devoted to the computational and theoretical assessment of the physical and technical characteristics of the effect of intense energy fluxes on the target in the magneto-inertial method of plasma confinement. The results of calculating the effect of intense broadband radiation fluxes on a single-layer cylindrical target are presented. Based on these calculations, the possibility of creating compact neutron generators is estimated. The processes of radiation transfer, thermal and electromagnetic processes, including the coefficients of thermal conductivity of electrons and ions and suprathermal electrons, are studied. A new algorithm for the numerical solution of the hyperbolic and parabolic (thermal) parts of the plasma dynamics equations is briefly described.