ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Gerald Kamelander, Geert Weimann, Luca Garzotti, Xavier Litaudon, Didier Moreau, Bernard Pégourié
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 558-566
Technical Paper | doi.org/10.13182/FST04-A530
Articles are hosted by Taylor and Francis Online.
The paper reports on simulation of pellet-fueled plasmas in a fusion reactor. The simulations have been performed by means of the ASTRA transport code. We have studied physical modeling of pellet injection as well as the numerical conditions to resolve pellet injection correctly. As a first step the essential mechanisms for density control have been studied based on simplified assumptions with a generic source of additional heating. The experience gained has been used to simulate advanced scenarios including internal transport barriers. It has been confirmed that it is possible to drive the plasma of a next-generation tokamak into a high-Q regime and to maintain it in a steady-state regime. Nevertheless, the pellet injection parameters required are rather demanding and imply a significant technological improvement of pellet injectors. Those investigations represent an improvement of simulations done earlier with a control of the central density at constant profile.