ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. Harb, D. Leichtle, B.-Y. Kim, J.-P. Martins, J. G. van der Laan, J. Bergman, E. Polunovskiy, A. Serikov
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 305-319
Technical Paper | doi.org/10.1080/15361055.2022.2109368
Articles are hosted by Taylor and Francis Online.
One of the advances in the test blanket module program within the ITER project in the last few years concerned the evolution of the pipe forest (PF) and bioshield plug (BP) designs. In support of the design phase, nuclear analyses to assess several responses in the fusion neutronics environment inside the port interspace (PI) with the existence of the evolved PF and BP are deemed essential. Nuclear analyses were commenced using the new PF and BP with developing the neutronics models and performing preliminary assessment of the radiation fields and shutdown dose rate (SDDR) in the PI. In this paper, the results of a full suite of nuclear analyses are discussed, which covers more configurations and radiation sources, in two plasma operational modes: on and off. For the plasma-on mode, different shielding options were examined. The results show a clear benefit of combining the installation of shielding panels on the PF enclosure with those in the BP “dogleg,” through which the pipes penetrate to the port cell area. For the plasma-off mode, the SDDR was assessed from different sources: activated components and residual LiPb layers in pipes after drainage. As maintenance operations are foreseen during the lifetime of the facility, the SDDR was also assessed for access conditions, open BP doors, and transport conditions, with PF extracted in the gallery.