ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Bor Kos, Georgeta Radulescu, Robert Grove, Rosaria Villari, Paola Batistoni, JET Contributors
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 284-304
Technical Paper | doi.org/10.1080/15361055.2022.2129182
Articles are hosted by Taylor and Francis Online.
Current experimental fusion systems and conceptual designs of fusion pilot plants (FPPs) are growing in complexity and size. Several radiation metrics are crucial to the safe operation of fusion machines, including neutron flux streaming through openings and the shutdown dose rate (SDDR). Most current designs of advanced experimental fusion systems—and the most probable candidates for FPPs—are based on the tokamak concept, which is prone to neutron streaming through the myriad openings needed for diagnostic and support systems. SDDR is caused by decay gamma rays from radionuclides that become activated by neutrons during the operation of a fusion system that use deuterium-deuterium (DD), tritium-tritium, or deuterium-tritium plasma. Because computational tools have become essential for determining these radiation metrics, they must be validated against reliable and applicable experimental data. Experiments at the Joint European Torus (JET) provide a unique source of experimental data for validating computational tools and nuclear data used to determine SDDR and neutron fluxes in streaming-dominated geometries. This paper presents the comprehensive analysis of the high-performance DD JET SDDR, and streaming experiments performed using Oak Ridge National Laboratory (ORNL) fusion workflows. The computational results were compared with experimental results that consist of online SDDR measurements with ionization chambers and neutron fluence streaming measurements using thermoluminescent detectors. The ratio of calculated-to-experimental SDDR values ranges from 0.6 to 2.5, and the streaming results range from 0.5 to 8.0. Future work will include analyzing the JET 2021 DTE2 campaign alongside the integration of the Shift Monte Carlo transport code into all ORNL fusion neutronics workflows.