ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Qiuran Wu, Peng Lu, Hua Du, Yu Zheng, Songlin Liu
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 274-283
Technical Paper | doi.org/10.1080/15361055.2022.2120304
Articles are hosted by Taylor and Francis Online.
Radiation field analyses of the fusion reactor are vital to machine design and personal/environmental irradiation protection. Owing to the complicated and toroidal symmetry of fusion reactors, these nuclear analyses have been performed based on a sector model with reflecting boundary conditions. However, not all sections of a fusion reactor are symmetrical in the toroidal direction, particularly the neutron flow channels introduced by auxiliary systems from which particles can leak directly from the plasma. Hence, the reflecting boundary conditions cannot accurately describe the particle transport. Consequently, radiation field analyses based on a full-sector model must be performed to verify the results obtained. In this regard, the neutronics model of CFETR has been built in 360 deg. Meanwhile, the development of the automatic geometry conversion platform cosVMPT has enabled an entire 360-deg model of the CFETR to be established. The model contains all primary components and the outer house building. Sixteen upper/lower ports and six equatorial ports are included, in which two of them are slanted for neutral beam injection, whereas the other ports are filled with a shielding block. The on-the-fly (OTF) global variance reduction method is utilized to accelerate neutron/photon coupling transport. The results show that cosVMPT and the OTF method are reliable, and that the obtained neutron/photon flux is asymmetric outside the main machine. The computational results of the 360-deg model are compared with those of the sector model such that the application scope of simplifying the modeling and calculation using the sector model can be further confirmed.