ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
S. Smolentsev
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 251-273
Technical Paper | doi.org/10.1080/15361055.2022.2116905
Articles are hosted by Taylor and Francis Online.
The successful development of robust breeding blanket systems will strongly rely on computational tools for predicting the complex behavior of the electrically conducting liquid-metal (LM) breeder flowing in the complex-shaped blanket ducts in the presence of a strong plasma-confining magnetic field, volumetric heating, and tritium generation. Associated transport processes involve magnetohydrodynamic (MHD) flows, heat transfer, corrosion, and tritium transport. This paper is an overview of past and present efforts in the development, application, and verification and validation (V&V) of such computational tools. As a result of the ongoing campaign on V&V of computer codes for LM blankets, the international fusion community has identified several candidates that promise to become real blanket design and analysis tools in the near future. Among them are HIMAG, MHD-UCAS, COMSOL Multiphysics, ANSYS FLUENT, ANSYS CFX, and OpenFOAM. The progress, over the last decade, in the application of such codes in blanket studies is tremendous. This is illustrated with two examples for a dual-coolant lead-lithium (DCLL) blanket: (1) integrated computer modeling for the recently designed DCLL blanket in the United States and (2) application of the code MHD-UCAS to the analysis of PbLi flows and heat transfer in a generic DCLL blanket prototype at high Hartmann (Ha ~ 104) and Grashof numbers (Gr ~ 1012). This paper also presents an approach to the development of a new integrated computational tool called the virtual dual-coolant lead-lithium (VDCLL) blanket, which elaborates the existing U.S. MHD code HIMAG.