ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Dennis Youchison, Charles Kessel, Paul Nogradi
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 222-250
Technical Paper | doi.org/10.1080/15361055.2022.2123683
Articles are hosted by Taylor and Francis Online.
Advances in high-performance computing now enable the engineering evaluation of large blanket components from a systems perspective at the beginning of a normal design cycle. As an example, we discuss the computational fluid dynamics (CFD) involved in characterizing the thermal performance of an entire 22.5 toroidal sector of a dual-coolant lead-lithium blanket with particular attention to the integrated manifolding and flow distributions. The inboard sector is roughly 7 m tall, has 321 first-wall helium-cooled channels, and five parallel PbLi breeder channels complete with insulating SiC flow channel inserts. A finite volume model was developed with various degrees of mesh refinement from 36 to 187 million cells to perform the flow calculations on disparate fluids with conjugate heat transfer in the solid. Steady-state CFD calculations were performed using a realizable k-ε turbulence model. Simplifications include a uniform applied surface heat flux and a one-dimensional radial volumetric neutron heating profile. Constant material properties were used for the F82H reduced-activation ferritic martensitic (RAFM) steel walls, SiC flow channel inserts, and the PbLi breeder. Ideal gas behavior was assumed for the helium, which includes compressibility. Helium mass flows of 54 kg/s at 8 MPa and PbLi flows of 3 kg/s at 101 kPa supply the sector, both at an inlet temperature of 350°C.
This early model is not optimized; however, it reveals important features not obvious in a conglomeration of smaller independent models. For example, all the manifolding was included to evaluate flow distributions throughout the full component. Submodels were only used to obtain the convective heat transfer coefficients (HTCs) inside the helium first-wall channels equipped with enhancement vanes that allow the first wall to handle 0.8 MW/m2 of plasma heat flux with the aim of keeping bulk RAFM steel temperatures near the creep-fatigue limit of 550°C. Average HTCs obtained from these detailed submodels were then used in the large model to predict thermal performance without incurring the meshing overhead from the thousands of internal vanes. Although much progress was made, initial results indicate that more must be done to further reduce hot spots on the first wall, minimize pressure drops, and provide optimal flow distributions.