ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Marcos X. Navarro, Tom Rognlien, Marvin Rensink, Juri Romazanov, Andreas Kirschner, Oliver Schmitz
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 213-221
Technical Paper | doi.org/10.1080/15361055.2022.2148840
Articles are hosted by Taylor and Francis Online.
This study focuses on performing a multiphysics study using the ERO2.0 and UEDGE codes for two standard double null configurations for the Fusion Nuclear Science Facility: (a) 100% recycling and (b) 99% recycling. Results show that the main contributor to tungsten erosion along the divertor plates is impurities from the midplane waveguides. In addition, the standard high-recycling case (100% recycling) shows a significantly higher buildup of impurities along the divertor tiles during the startup phase, which can lead to a higher increase of energy loss in the plasma during steady-state operation. Last, for high recycling, anomalous diffusion can dominate over parallel field diffusion. The work performed in this study can be iteratively applied to a full operation scenario with additional physics such as those from neutrals, wall shaping, and additional external fields.