ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ehab Hassan, C. E. Kessel, J. M. Park, W. R. Elwasif, R. E. Whitfield, K. Kim, P. B. Snyder, D. B. Batchelor, D. E. Bernholdt, M. R. Cianciosa, D. L. Green, K. J. H. Law
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 189-212
Technical Paper | doi.org/10.1080/15361055.2022.2145826
Articles are hosted by Taylor and Francis Online.
Several configurations for the core and pedestal plasma are examined for a predefined tokamak design by implementing multiple heating/current drive (H/CD) sources to achieve an optimum configuration of high fusion power in a noninductive operation while maintaining an ideally magnetohydrodynamic (MHD) stable core plasma using the IPS-FASTRAN framework. IPS-FASTRAN is a component-based lightweight coupled simulation framework that is used to simulate magnetically confined plasma by integrating a set of high-fidelity codes to construct the plasma equilibrium (EFIT, TOQ, and CHEASE), calculate the turbulent heat and particle transport fluxes (TGLF), model various H/CD systems (TORIC, TORAY, GENRAY, and NUBEAM), model the pedestal pressure and width (EPED), and estimate the ideal MHD stability (DCON). The TGLF core transport model and EPED pedestal model are used to self-consistently predict plasma profiles consistent with ideal MHD stability and H/CD (and bootstrap) current sources. In order to evaluate the achievable and sustainable plasma beta, varying configurations are produced ranging from the no-wall stability to with-wall stability regimes, simultaneously subject to the self-consistent TGLF, EPED, and H/CD source profile predictions that optimize configuration performance. The pedestal density, plasma current, and total injected power are scanned to explore their impact on the target plasma configuration, fusion power, and confinement quality. A set of fully noninductive scenarios are achieved by employing ion-cyclotron, neutral beam injection, helicon, and lower-hybrid H/CDs to provide a broad profile for the total current drive in the core region for a predefined tokamak design. These noninductive scenarios are characterized by high fusion gain (Q ~ 4) and power (Pfus ~ 600 MW), optimum confinement quality (H98 ~ 1.1), and high bootstrap current fraction (fBS ~ 0.7) for Greenwald fraction below unity. The broad current profile configurations identified are stable to low-n kink modes either because the normalized pressure β is below the no-wall limit or a wall is present.