ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. B. Xu, R. Guo, Z. Cao, M. Li, X. L. Liu, B. Zhang, HL-2A Team
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 162-167
Technical Paper | doi.org/10.1080/15361055.2022.2131162
Articles are hosted by Taylor and Francis Online.
Pellet injection (PI) is the preferred fueling method in the future fusion reactor. It is particularly important to study the flow field characteristics of the frozen fuel extrusion process for the future steady operation of the pellet injector. In order to study the influence of groove depth on extrusion flux and conveying capacity, the flow field characteristics of a repetitive pellet injector with a single-screw extruder in the China Fusion Engineering Test Reactor (CFETR) was numerically simulated with POLYFLOW software. Thus, information about pressure field, viscous heating, and velocity field distribution was obtained. The results indicate that to a certain extent, increasing the groove depth (while maintaining the gaps between the screw and extrusion cylinder) is beneficial for the conveying capacity and pressure building capacity. The results of the numerical simulations show that at a screw speed of 120 rpm, screw outer diameter of 20 mm, screw length of 230 mm, screw groove depth of 6 mm, and screw prism gap of 0.3 mm, solid hydrogen can be stably extruded, and the velocity of the extruded ice at the nozzle is 0.15 m/s, which meets the design requirement of the CFETR PI system. These results also provide good references for structure design and performance optimization of the CFETR pellet injector.