ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Radiant secures funding, moves toward microreactor testing in INL’s DOME
Radiant Industries has announced a $100 million Series C funding round to be used primarily to complete its Kaleidos Development Unit (KDU) microreactor for testing in Idaho National Laboratory's Demonstration of Microreactor Experiments (DOME) facility within two years.
H. B. Xu, R. Guo, Z. Cao, M. Li, X. L. Liu, B. Zhang, HL-2A Team
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 162-167
Technical Paper | doi.org/10.1080/15361055.2022.2131162
Articles are hosted by Taylor and Francis Online.
Pellet injection (PI) is the preferred fueling method in the future fusion reactor. It is particularly important to study the flow field characteristics of the frozen fuel extrusion process for the future steady operation of the pellet injector. In order to study the influence of groove depth on extrusion flux and conveying capacity, the flow field characteristics of a repetitive pellet injector with a single-screw extruder in the China Fusion Engineering Test Reactor (CFETR) was numerically simulated with POLYFLOW software. Thus, information about pressure field, viscous heating, and velocity field distribution was obtained. The results indicate that to a certain extent, increasing the groove depth (while maintaining the gaps between the screw and extrusion cylinder) is beneficial for the conveying capacity and pressure building capacity. The results of the numerical simulations show that at a screw speed of 120 rpm, screw outer diameter of 20 mm, screw length of 230 mm, screw groove depth of 6 mm, and screw prism gap of 0.3 mm, solid hydrogen can be stably extruded, and the velocity of the extruded ice at the nozzle is 0.15 m/s, which meets the design requirement of the CFETR PI system. These results also provide good references for structure design and performance optimization of the CFETR pellet injector.