ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 135-150
Technical Paper | doi.org/10.1080/15361055.2022.2107311
Articles are hosted by Taylor and Francis Online.
Numerical calculations are conducted for liquid-metal magnetohydrodynamic flows through a circular pipe with an electrically conducting wall in both the magnetic field inlet region and the outlet region. Conservation equations of fluid mass and of fluid momentum and the Poisson equation for electrical potential are solved numerically. The calculations are performed by a cylindrical coordinate system using a staggered grid in order to obtain numerically stable solutions, covering Hartmann numbers up to the order of 10 000. As to the loss coefficient ζ for the pressure drop, the value of ζ/(Ha2/Re) does not depend on the Ha number, the Re number, and the wall conductance ratio very much for both the magnetic field inlet section and the outlet section. The value of ζ/(Ha2/Re) changes mainly with the gradient of the applied magnetic field for both the magnetic field inlet section and the outlet section.