ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Dustin Olson, Kirk Shanahan, Binod Rai, Dale Hitchcock, Catherine Housley, George Larsen
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 95-103
Technical Paper | doi.org/10.1080/15361055.2022.2116224
Articles are hosted by Taylor and Francis Online.
The study of tritium aging effects on materials requires a significant time commitment as a consequence of its 12.3-year half-life, making developmental studies prohibitively difficult and expensive. However, detailed knowledge of long-term aging effects is critical to the development of structural and storage materials for future fusion reactor technologies. As a result, multiple approaches to simulated aging effects have been investigated. We report a method of simulated tritium aging achieved though the incorporation of trapped gases via high-energy ball milling of LaNi4.25Al0.75 alloy storage material. Experimental results verify the presence of trapped gases by a combination of temperature programmed desorption and LECO chemical analysis. Following gas incorporation, we find that many of the degraded hydrogen sorption properties found in aged storage materials are reproduced by the ball milled powders.