ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Dustin Olson, Kirk Shanahan, Binod Rai, Dale Hitchcock, Catherine Housley, George Larsen
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 95-103
Technical Paper | doi.org/10.1080/15361055.2022.2116224
Articles are hosted by Taylor and Francis Online.
The study of tritium aging effects on materials requires a significant time commitment as a consequence of its 12.3-year half-life, making developmental studies prohibitively difficult and expensive. However, detailed knowledge of long-term aging effects is critical to the development of structural and storage materials for future fusion reactor technologies. As a result, multiple approaches to simulated aging effects have been investigated. We report a method of simulated tritium aging achieved though the incorporation of trapped gases via high-energy ball milling of LaNi4.25Al0.75 alloy storage material. Experimental results verify the presence of trapped gases by a combination of temperature programmed desorption and LECO chemical analysis. Following gas incorporation, we find that many of the degraded hydrogen sorption properties found in aged storage materials are reproduced by the ball milled powders.