ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Industry Update—March 2025
Here is a recap of industry happenings from the recent past:
BWRX-300 SMR deployment partnership developed
Several U.S. utility companies and supply chain partners have formed a coalition to accelerate deployment of GE Hitachi Nuclear Energy’s BWRX-300 small modular reactor. The coalition, which has applied for $800 million in funding from the Department of Energy’s Generation III+ SMR program, is led by the Tennessee Valley Authority and includes GEH, Bechtel, BWX Technologies, Duke Energy, Electric Power Research Institute, Indiana Michigan Power, Oak Ridge Associated Universities, Sargent & Lundy, Scot Forge, other utilities and advanced nuclear project developers, and the State of Tennessee. TVA previously selected the BWRX-300 SMR for possible deployment at the Clinch River site, near Oak Ridge, Tenn. If the new coalition is awarded the requested DOE funding, TVA intends to accelerate construction of the first SMR at this site by two years, planning for commercial operation by 2033.
Thomas F. Fuerst, Chase N. Taylor, Paul W. Humrickhouse
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 77-94
Technical Paper | doi.org/10.1080/15361055.2022.2090784
Articles are hosted by Taylor and Francis Online.
Permeation is investigated for the introduction of hydrogen isotopes into lead lithium (PbLi) for the Tritium Extraction eXperiment (TEX). TEX is a forced-convection PbLi loop under construction at Idaho National Laboratory that will test the vacuum permeator (VP) method of tritium extraction from PbLi. The source permeator (SP) delivers atomic hydrogen (H, D, and T) from a gas-phase reservoir into the PbLi via a permeable dense metal membrane. A modular system and a fixed SP system are presented. In the modular design, PbLi flows through the inside of a tubular membrane, and gas-phase hydrogen is introduced on the outside of the membrane. Atomic hydrogen permeates radially inward through the membrane into the PbLi. In the fixed design, PbLi flows into an expansion chamber with closed-ended tubular membranes inserted. Gas-phase hydrogen is introduced on the inside of the closed-ended membranes, and atomic hydrogen permeates radially outward into the flowing PbLi. Hydrogen transport models based on steady-state mass transport through PbLi and permeation through the metal membrane were developed to assess the operation of the SP relative to experimental variables and to allow understanding of uncertain parameter effects, such as PbLi hydrogen transport properties and the effective hydrogen permeability of the VP. This modeling effort considers iron as the SP material and vanadium as the VP material.