ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
H. B. Flynn, George Larsen
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 60-68
Technical Paper | doi.org/10.1080/15361055.2022.2115833
Articles are hosted by Taylor and Francis Online.
Developing a Fusion Pilot Plant (FPP) design that minimizes risks due to tritium in-process inventory (IPI) is an important concern for the operation of commercial devices. This becomes even more of concern since an FPP will be breeding more tritium than is burned in the reactor for sustainability. The IPI is the tritium moving through the system that is not in the storage and delivery subsystem. A process model that solves time-dependent differential equations based on processing times was used to investigate the reduction of the IPI of a potential fuel cycle design. The impact of new and more efficient technologies such as direct internal recycling (DIR), metal foil pumps, continuous pumping, improved isotope separation, and hydrogen separating continuous pumps on IPI was investigated by adjusting subsystem processing times and material flow streams. It was shown that any of the insertions of DIR studied in this paper caused a reduction in the total IPI of the system and proved to be the optimal way to reduce the IPI in the system. Fuel cycle modifications near the torus, such as a coupled DIR and improved pumping systems, produced the largest reductions in tritium inventory.