ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Sinclair, T. Abrams, L. Holland
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 46-59
Technical Paper | doi.org/10.1080/15361055.2022.2099506
Articles are hosted by Taylor and Francis Online.
Operating with hot tokamak plasma-facing components will be essential in fusion reactors to maximize the thermal efficiency of the blanket. The SOLPS-ITER edge plasma code package and the DIVIMP Monte Carlo impurity tracking code were used in tandem to simulate the effect of active wall heating on impurity sourcing and transport in a DIII-D–size tokamak. The SOLPS-ITER plasma background was generated based on a previous DIII-D discharge and includes the effect of particle drifts. DIVIMP simulations found that actively heating the lower divertor (versus the divertor shelf or the entire wall) was the most efficient way to minimize gross erosion and core impurity influx at temperatures above 1000 K. Replacing the graphite wall with a silicon carbide (SiC) wall yielded a 5 to 20× decrease in the estimated gross erosion rate of carbon, with a maximum decrease observed at a lower divertor temperature of 800 K. Gross erosion of Si from SiC was estimated to be almost 100× lower than that of C from SiC, due primarily to the low impact energy of incident D plasma on the divertor targets. The core impurity influx for SiC walls is predicted to be lower than that with graphite walls, but eroded Si ions appear to migrate preferentially (versus C) to the core due to a more peaked erosion profile closer to the strike points where the ion temperature gradient force drives particles upstream. These predictive simulations suggest that active heating of the plasma-facing wall may both lower wall erosion and improve core performance relative to the “warm” walls of current devices that are typically only heated via plasma contact. Relative reductions in gross erosion and upstream accumulation by using SiC instead of graphite as the wall material strengthen the argument for upgrades to current graphite-clad machines and continued development of SiC first-wall and blanket concepts.