ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Radiant secures funding, moves toward microreactor testing in INL’s DOME
Radiant Industries has announced a $100 million Series C funding round to be used primarily to complete its Kaleidos Development Unit (KDU) microreactor for testing in Idaho National Laboratory's Demonstration of Microreactor Experiments (DOME) facility within two years.
Shawn Zamperini, T. Abrams, J. H. Nichols, J. D. Elder, J. D. Duran, P. C. Stangeby, D. C. Donovan, D. L. Rudakov, A. Wingen, C. Crowe
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 36-45
Technical Paper | doi.org/10.1080/15361055.2022.2082791
Articles are hosted by Taylor and Francis Online.
A novel multicode workflow to interpret collector probe deposition patterns in DIII-D has been developed. The components of the workflow consist of a detailed computer-aided-design file of the vessel wall and the scrape-off-layer (SOL) codes MAFOT, OSM, DIVIMP, and 3DLIM. A special-purpose toolkit enables passing the output of these codes among each other to provide a full-SOL picture of impurity transport. A demonstration of the workflow is described to support evidence of near-SOL tungsten parallel accumulation during trace W impurity experiments on DIII-D. Iteration between simulated deposition patterns in 3DLIM and DIVIMP predicts a region of elevated W density near the separatrix about halfway between the outboard midplane and the top of the plasma. This workflow will be used to better interpret collector probe experiments on DIII-D.