ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
M. Harb, A. Davis, P. P. H. Wilson
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 1-12
Technical Paper | doi.org/10.1080/15361055.2022.2115831
Articles are hosted by Taylor and Francis Online.
In fusion energy systems, part of the design effort is dedicated to the assessment of the shutdown dose rate (SDR) due to the decay photons that will be emitted from activated components. Monte Carlo transport codes are often used to obtain the neutron flux distribution in the problem domain. The neutron flux distribution is used in the rigorous 2-step (R2S) workflow to obtain the photon emission density distribution of decaying radionuclides. The photon emission density is then used as an input for a dedicated photon transport step to calculate the SDR. In this paper, the uncertainty of the decay gamma source due to the uncertainty of the neutron flux distribution in the R2S workflow is investigated. A scheme is developed to estimate the uncertainty of the decay gamma source, building on the concept of groupwise transmutation and using standard error propagation techniques. The applicability of the newly developed scheme is then demonstrated on one of the conceptual designs of the fusion nuclear science facility.