ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
F. Romanelli, A. Coletti, C. Gormezano, F. Lucci, A. Pizzuto, G. B. Righetti, The FTU Group, The ECRH Group
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 483-511
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A526
Articles are hosted by Taylor and Francis Online.
A conceptual study is presented for a substantial upgrade of the Frascati Tokamak Upgrade (FTU) up to B = 8 T, I = 6 MA, and R [approximately equal to] 1.3 m to study burning plasma (BP) issues in deuterium plasmas operating up to an equivalent DT gain close to Q = 2 in the ELMy H-mode and to Q = 5 with an internal transport barrier (ITB). The effect of alpha particles is simulated by ~1 MeV fast 3He minority heating produced by ion cyclotron resonance heating (20 MW). Thanks to the high-density values ([approximately equal to]4 × 1020 m-3), the FT3 plasmas are characterized by short electron-ion equipartition time (60 ms in the ELMy H-mode scenario) and slowing-down time (44 ms), with respect to the energy confinement time of ~340 ms, a feature characteristic of BP experiments but not always satisfied with present tokamak devices. Advanced scenarios at 5 T with fully noninductive current drive can be investigated with a steady-state current density profile achieved in <5 s. The aim of FT3 is to prepare ITER operation and to provide a test bed for the development of the ITER auxiliary system and diagnostics. Elements of the scientific program are as follows: the investigation of energetic particle collective effects, optimization of H-mode scenarios, development of improved H-mode scenarios and scenarios with ITBs, magnetohydrodynamic and transport studies in ITER-relevant conditions, and study of edge plasma dynamics. FT3 can use all the existing facilities available in Frascati and could be constructed in ~5 yr.