ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Aquilini, L. Baldi, P. Bibet, R. Bozzi, A. Bruschi, R. Cesario, S. Cirant, C. Ferro, F. Gandini, S. di Giovenale, G. Granucci, T. Fortunato, G. Maddaluno, F. de Marco, G. Maffia, A. Marra, V. Mellera, F. Mirizzi, V. Muzzini, A. Nardone, A. Orsini, M. Papalini, P. Papitto, V. Pericoli-Ridolfini, P. Petrolini, S. Petrosino, S. Podda, G. L. Ravera, G. B. Righetti, M. Roccon, F. Santini, M. Sassi, A. Simonetto, C. Sozzi, N. Spinicchia, A. A. Tuccillo, P. Zampelli
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 459-482
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A525
Articles are hosted by Taylor and Francis Online.
High-frequency wave systems with high-power density launching capability have been the preferred choice to heat the Frascati Tokamak Upgrade (FTU) because of physics arguments (electron heating at very high density) and space constraints from the compactness of the machine design (8-cm-wide port). They do include an 8-GHz lower hybrid current drive (LHCD) system, a 140-GHz electron cyclotron resonance heating (ECRH) system, and a 433-MHz ion Bernstein waves system (IBW). The technical aspects of these systems will be reviewed in this article. The main features of the design include the following: (a) a very compact conventional LHCD grill with a compact window to keep the vacuum on 48 (12 columns, 4 rows) individual waveguides allowing the maximum flexibility in spectra generation to be achieved; power handling up to [approximately equal to]10 kW/cm2 has been achieved, (b) ECRH launchers designed as a quasi-optical system (implementing ITER relevant solutions) retaining the maximum flexibility in the equatorial launcher (poloidal/toroidal steerability) to exploit a variety of scenarios, (c) a two-waveguides launching array making the IBW experiment on FTU unique. Other technical aspects (sources, transmission lines, etc.) are also reviewed. The development of a new ITER relevant lower hybrid launcher, the passive active multijunction, is described.