ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
M. Aquilini, L. Baldi, P. Bibet, R. Bozzi, A. Bruschi, R. Cesario, S. Cirant, C. Ferro, F. Gandini, S. di Giovenale, G. Granucci, T. Fortunato, G. Maddaluno, F. de Marco, G. Maffia, A. Marra, V. Mellera, F. Mirizzi, V. Muzzini, A. Nardone, A. Orsini, M. Papalini, P. Papitto, V. Pericoli-Ridolfini, P. Petrolini, S. Petrosino, S. Podda, G. L. Ravera, G. B. Righetti, M. Roccon, F. Santini, M. Sassi, A. Simonetto, C. Sozzi, N. Spinicchia, A. A. Tuccillo, P. Zampelli
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 459-482
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A525
Articles are hosted by Taylor and Francis Online.
High-frequency wave systems with high-power density launching capability have been the preferred choice to heat the Frascati Tokamak Upgrade (FTU) because of physics arguments (electron heating at very high density) and space constraints from the compactness of the machine design (8-cm-wide port). They do include an 8-GHz lower hybrid current drive (LHCD) system, a 140-GHz electron cyclotron resonance heating (ECRH) system, and a 433-MHz ion Bernstein waves system (IBW). The technical aspects of these systems will be reviewed in this article. The main features of the design include the following: (a) a very compact conventional LHCD grill with a compact window to keep the vacuum on 48 (12 columns, 4 rows) individual waveguides allowing the maximum flexibility in spectra generation to be achieved; power handling up to [approximately equal to]10 kW/cm2 has been achieved, (b) ECRH launchers designed as a quasi-optical system (implementing ITER relevant solutions) retaining the maximum flexibility in the equatorial launcher (poloidal/toroidal steerability) to exploit a variety of scenarios, (c) a two-waveguides launching array making the IBW experiment on FTU unique. Other technical aspects (sources, transmission lines, etc.) are also reviewed. The development of a new ITER relevant lower hybrid launcher, the passive active multijunction, is described.