ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
O. Tudisco, G. M. Apruzzese, P. Buratti, L. Cantarini, A. Canton, L. Carraro, V. Cocilovo, R. de Angelis, M. de Benedetti, B. Esposito, L. Gabellieri, E. Giovannozzi, G. Granucci, L. A. Grosso, G. Grosso, P. Innocente, H. Kroegler, M. Leigheb, G. Monari, D. Pacella, L. Panaccione, V. Pericoli-Ridolfini, G. Pizzicaroli, S. Podda, M. E. Puiatti, G. Rocchi, A. Sibio, A. Simonetto, P. Smeulders, U. Tartari, N. Tartoni, B. Tilia, M. Valisa, V. Zanza, M. Zerbini
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 402-421
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A522
Articles are hosted by Taylor and Francis Online.
The design of diagnostics for the Frascati Tokamak Upgrade (FTU) is challenging because of the compactness of the machine (8-cm-wide ports) and the low operating temperatures requiring the presence of a cryostat. Nevertheless, a rather complete diagnostic system has been progressively installed. The basic systems include a set of magnetic probes, various visible and ultraviolet spectrometers, electron cyclotron emission (ECE) for electron temperature profiles measurements and electron tails monitoring, far-infrared and CO2 interferometry, X-ray (soft and hard) measurements, a multichord neutron diagnostics (with different type detectors), and a Thomson scattering system. Some diagnostics specific to the FTU physics program have been used such as microwave reflectometry for turbulence studies, edge-scanning Langmuir probes for radio-frequency coupling assessment, oblique ECE, and a fast electron bremsstrahlung (FEB) camera for lower hybrid current drive-induced fast electron tails.These systems are briefly reviewed in this paper. Further developments including a scanning CO2 laser two-color interferometer, two FEB cameras for tomographic analysis, a motional Stark effect system, and a collective Thomson scattering system are also described.