ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Micah D. Lowenthal
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 46-65
Technical Paper | doi.org/10.13182/FST98-A52
Articles are hosted by Taylor and Francis Online.
An analysis is presented of the radioactive wastes from the International Thermonuclear Experimental Reactor (ITER) and how those wastes would fit into the regulatory environments of four potential host nations: France, Germany, Japan, and the United States. The reactor described in the ITER Draft Interim Design Report is used as the basis for the radioactive inventory assessments that are carried out using ONEDANT for the neutron transport calculations and ACAB for the activation calculations. The radioactive material produced by operation of the reactor is rated according to the protocols for waste management in each nation and at specific disposal sites currently operating in those nations. Results of the assessments vary drastically between disposal sites - even between near-surface-burial sites within the U.S. Department of Energy. One disposal site (Westinghouse Hanford Company) could accept all of ITER's wastes after a storage and cooling period (all wastes are assessed at 30 yr after shutdown). Other sites (the Savannah River and the Nevada Test Sites) could not accept any components within the toroidal field coils, similar to the restrictions in Germany. Blanket modules would be excluded from near-surface burial in France and Japan, but other components may qualify.