ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Micah D. Lowenthal
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 46-65
Technical Paper | doi.org/10.13182/FST98-A52
Articles are hosted by Taylor and Francis Online.
An analysis is presented of the radioactive wastes from the International Thermonuclear Experimental Reactor (ITER) and how those wastes would fit into the regulatory environments of four potential host nations: France, Germany, Japan, and the United States. The reactor described in the ITER Draft Interim Design Report is used as the basis for the radioactive inventory assessments that are carried out using ONEDANT for the neutron transport calculations and ACAB for the activation calculations. The radioactive material produced by operation of the reactor is rated according to the protocols for waste management in each nation and at specific disposal sites currently operating in those nations. Results of the assessments vary drastically between disposal sites - even between near-surface-burial sites within the U.S. Department of Energy. One disposal site (Westinghouse Hanford Company) could accept all of ITER's wastes after a storage and cooling period (all wastes are assessed at 30 yr after shutdown). Other sites (the Savannah River and the Nevada Test Sites) could not accept any components within the toroidal field coils, similar to the restrictions in Germany. Blanket modules would be excluded from near-surface burial in France and Japan, but other components may qualify.