ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
J. C. Schwenzer, C. Day, T. Giegerich, A. Santucci
Fusion Science and Technology | Volume 78 | Number 8 | November 2022 | Pages 664-675
Technical Paper | doi.org/10.1080/15361055.2022.2101834
Articles are hosted by Taylor and Francis Online.
The European Demonstration Fusion Power Reactor (EU-DEMO) has to operate in a completely tritium self-sufficient mode after initial start-up, which includes producing excess tritium to allow the start-up of other reactors. The initial start-up inventory is mainly dictated by operational inventories in the fuel cycle (FC). Advances in FC technologies and immediate recycling of a large fraction of the torus exhaust gas in the direct internal recycling loop are expected to contribute greatly to an overall low operational inventory. The remainder of the torus exhaust gas, as well as tritium from the blankets, nevertheless requires treatment in the tritium plant in order to perform the necessary purification and isotope rebalancing. Here, the employed systems still feature significant operational inventories and predominantly require steady-state operation in order to maximize their performance. In this paper the operational tritium inventories in the major FC systems are reported based on the pre-concept FC design. Additionally, major dependencies of these inventories on key design drivers of the FC are discussed. It is predicted that the EU-DEMO FC will be able to operate with an overall tritium inventory of less than 2 kg.