ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Roger Raman, Kyle Morgan, Joshua A. Reusch, John A. Rogers, Stephanie J. Diem, Fatima Ebrahimi, Stephen C. Jardin, Brian A. Nelson, Masayuki Ono, Justin D. Weberski
Fusion Science and Technology | Volume 78 | Number 8 | November 2022 | Pages 649-663
Technical Paper | doi.org/10.1080/15361055.2022.2101833
Articles are hosted by Taylor and Francis Online.
Transient coaxial helicity injection (transient CHI), first developed on the Helicity Injected Torus-II (HIT-II) and later on the National Spherical Torus Experiment (NSTX) for implementing solenoid-free plasma current startup capability in a spherical tokamak (ST), is now planned to be tested on the PEGASUS-III ST using a novel double-biased configuration. Such a configuration is likely needed for transient CHI deployment in a reactor. The transient CHI system optimization will be studied on PEGASUS-III to enable startup toroidal persisting currents at the limits permitted by the external poloidal field coils. A transient CHI discharge is generated by driving injector current along magnetic field lines that connect the inner and outer divertor plates on one end of the ST. Simulations using the Tokamak Simulation Code are used to assess the transient CHI toroidal current generation potential and electrode gap location on the PEGASUS-III. While past transient CHI systems have used high-voltage, oil-filled capacitors for driving the injector current, for improved safety, PEGASUS-III will use a high-current capacitor bank based on low-voltage electrolytic capacitors. The designed and fabricated system is capable of over 32 kA. The modular design features permit the system to be upgraded to higher currents, as needed, to meet the future needs of the PEGASUS-III facility.