ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
Roger Raman, Kyle Morgan, Joshua A. Reusch, John A. Rogers, Stephanie J. Diem, Fatima Ebrahimi, Stephen C. Jardin, Brian A. Nelson, Masayuki Ono, Justin D. Weberski
Fusion Science and Technology | Volume 78 | Number 8 | November 2022 | Pages 649-663
Technical Paper | doi.org/10.1080/15361055.2022.2101833
Articles are hosted by Taylor and Francis Online.
Transient coaxial helicity injection (transient CHI), first developed on the Helicity Injected Torus-II (HIT-II) and later on the National Spherical Torus Experiment (NSTX) for implementing solenoid-free plasma current startup capability in a spherical tokamak (ST), is now planned to be tested on the PEGASUS-III ST using a novel double-biased configuration. Such a configuration is likely needed for transient CHI deployment in a reactor. The transient CHI system optimization will be studied on PEGASUS-III to enable startup toroidal persisting currents at the limits permitted by the external poloidal field coils. A transient CHI discharge is generated by driving injector current along magnetic field lines that connect the inner and outer divertor plates on one end of the ST. Simulations using the Tokamak Simulation Code are used to assess the transient CHI toroidal current generation potential and electrode gap location on the PEGASUS-III. While past transient CHI systems have used high-voltage, oil-filled capacitors for driving the injector current, for improved safety, PEGASUS-III will use a high-current capacitor bank based on low-voltage electrolytic capacitors. The designed and fabricated system is capable of over 32 kA. The modular design features permit the system to be upgraded to higher currents, as needed, to meet the future needs of the PEGASUS-III facility.