ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Yasuko Kawamoto, Shigeru Morita, Gakushi Kawamura, Motoshi Goto, Tetsutarou Oishi, Tomoko Kawate, Masahiro Kobayashi, Mamoru Shoji
Fusion Science and Technology | Volume 78 | Number 7 | October 2022 | Pages 537-548
Technical Paper | doi.org/10.1080/15361055.2022.2068897
Articles are hosted by Taylor and Francis Online.
In the Large Helical Device (LHD), a high-performance plasma has been obtained at the inwardly shifted magnetic axis position of Rax = 3.60 m in which a spatial distance between the first wall on the vacuum vessel and the outermost edge boundary of the stochastic magnetic field layer existing outside the last closed flux surface takes a minimum value of ~12 mm at the inboard side. In order to investigate contact between the edge plasma boundary and the inboard first wall, a radial profile of Hβ line emissions at 4861 Å has been measured using a Czerny-Turner visible spectrometer and a 40-channel optical fiber array. All Hβ profiles measured at different magnetic axis positions of Rax = 3.60, 3.75, and 3.90 m showed a centrally peaked profile except for a few fiber channels observing the outboard edge plasma. The Hβ emission near the inboard first wall was negligibly weak, in particular, in the case of Rax = 3.60 m, suggesting no significant contact between the edge boundary plasma and the vacuum vessel first wall. The radial Hβ profile was then analyzed in detail using the EMC3-EIRENE edge plasma simulation code. The simulation well reproduced the measured profiles, including the extremely weak Hβ emission around the inboard first wall in the Rax = 3.60 m configuration. The centrally peaked profiles are found to originate in the Hβ emissions around X-points, while hydrogen neutrals are dominantly localized near the divertor plates. These results confirm the formation of a complete open divertor configuration in the LHD discharge without significant contact with the first wall. The presence of a region with extremely short magnetic field connection lengths (Lc < 5 m) between the inboard first wall and the outermost edge boundary is a key point to eliminate the strong plasma-wall interaction because sustainment of a significant edge plasma is entirely difficult in such a low Lc region.