ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. Frigione, L. Pieroni, P. Buratti, E. Giovannozzi, M. Romanelli, B. Esposito, M. Leigheb, L. Gabellieri
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 339-349
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A518
Articles are hosted by Taylor and Francis Online.
High-density plasmas (no ~ 8 × 1020 m-3) achieving steady improved core-confinement have been obtained in the Frascati Tokamak Upgrade (FTU) up to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas exhibit also high purity, efficient electron-ion coupling, and peaked density profiles sustained for several energy confinement times. Neutron yields in excess of 1 × 1013 n/s are measured, consistent with the reduction of the ion transport to neoclassical levels. Improved performance is associated with sawtooth stabilization that occurs when the pellet penetrates close to the q = 1 surface. In this regime, impurity accumulation can be prevented if a slow sawtooth activity is maintained. Experiments aimed at obtaining radiation-improved modes at high field have also been carried out using neon injection. The observed increase of the average density, with respect to the reference discharge, is significantly larger than the contribution of Ne. The neutron yield increases also by a factor of 3 to 6, and the energy confinement time increases by a factor up to 1.4.