ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Rami Ghorbel, Ahmed Ktari, Nader Haddar
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 503-511
Rapid Communication | doi.org/10.1080/15361055.2022.2051923
Articles are hosted by Taylor and Francis Online.
The joining of stainless clad steel plates (SCSPs) by welding processes is relatively difficult due to differences in the chemical compositions and the physical and mechanical properties between both the carbon and the stainless steels comprising the clad material. These welded structures often suffer from several structural integrity problems such as bulging phenomena that can appear after bending tests, in the welded zone, due to the presence of a local hardening zone (LHZ). The main purpose of this paper is to investigate the origin of the LHZ typically produced in the welded joint of SCSPs after the bending operation. Optical micrographs revealed the presence of a typical pearlitic-ferritic structure in the welded zone filled with E7018 metal and a dendritic δ-ferrite structure solidified under a skeletal form in the welded zone filled with ER316L metal. The microstructure of the weld metal transition zone (WMTZ) filled with ER309L metal shows the presence of martensitic laths as well as cellular and columnar structures. In addition, the WMTZ revealed the presence of three types of grain boundaries, which are formed during the gas tungsten arc welding process: solidification sub-grain boundary, solidification grain boundary, and migrated grain boundary. Vickers microhardness measurements performed along the thickness of the welded joint showed that the highest microhardness value (406 HV) was observed at the WMTZ. The significant increase of the microhardness value in this transition zone was attributed to the presence of martensitic laths as well as cellular and columnar structures.