ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Rami Ghorbel, Ahmed Ktari, Nader Haddar
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 503-511
Rapid Communication | doi.org/10.1080/15361055.2022.2051923
Articles are hosted by Taylor and Francis Online.
The joining of stainless clad steel plates (SCSPs) by welding processes is relatively difficult due to differences in the chemical compositions and the physical and mechanical properties between both the carbon and the stainless steels comprising the clad material. These welded structures often suffer from several structural integrity problems such as bulging phenomena that can appear after bending tests, in the welded zone, due to the presence of a local hardening zone (LHZ). The main purpose of this paper is to investigate the origin of the LHZ typically produced in the welded joint of SCSPs after the bending operation. Optical micrographs revealed the presence of a typical pearlitic-ferritic structure in the welded zone filled with E7018 metal and a dendritic δ-ferrite structure solidified under a skeletal form in the welded zone filled with ER316L metal. The microstructure of the weld metal transition zone (WMTZ) filled with ER309L metal shows the presence of martensitic laths as well as cellular and columnar structures. In addition, the WMTZ revealed the presence of three types of grain boundaries, which are formed during the gas tungsten arc welding process: solidification sub-grain boundary, solidification grain boundary, and migrated grain boundary. Vickers microhardness measurements performed along the thickness of the welded joint showed that the highest microhardness value (406 HV) was observed at the WMTZ. The significant increase of the microhardness value in this transition zone was attributed to the presence of martensitic laths as well as cellular and columnar structures.