ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Lingrui Li, Zijia Zhao, Yanyun Ma, Zhe Ma, Jiang Lai, Yunliang Zhu
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 475-489
Technical Paper | doi.org/10.1080/15361055.2022.2049121
Articles are hosted by Taylor and Francis Online.
With the development of magnetic confinement fusion (MCF), it has become feasible for fusion energy to solve the future energy crisis. High-energy neutrons are produced during the fusion reaction. Neutron shielding and the tritium breeding ratio in MCF require a neutron source of high precision. In traditional methods, the neutron source is supposed to be isotropic. However, the double-differential cross sections for nuclear fusion given in the ENDF/B-VI database make it possible to calculate the neutron direction distribution in deuterium-tritium (D-T) plasma. In this study, a Maxwellian reactivity rate database is obtained by extracting double-differential cross-section data from the ENDF/B-VI database and then revising it. Monte Carlo and discrete ordinate methods are used to simulate transportation and fusion in D-T plasma and obtain the angular distribution of the neutron generation rate. The results of a preliminary numerical simulation in a simple model tell us that the difference between anisotropy and isotropy can reach an average of 4.6%. A temperature-corrected double-differential cross-section database and a numerical simulation method are developed to calculate the angular distribution of the neutron generation rate.