ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lingrui Li, Zijia Zhao, Yanyun Ma, Zhe Ma, Jiang Lai, Yunliang Zhu
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 475-489
Technical Paper | doi.org/10.1080/15361055.2022.2049121
Articles are hosted by Taylor and Francis Online.
With the development of magnetic confinement fusion (MCF), it has become feasible for fusion energy to solve the future energy crisis. High-energy neutrons are produced during the fusion reaction. Neutron shielding and the tritium breeding ratio in MCF require a neutron source of high precision. In traditional methods, the neutron source is supposed to be isotropic. However, the double-differential cross sections for nuclear fusion given in the ENDF/B-VI database make it possible to calculate the neutron direction distribution in deuterium-tritium (D-T) plasma. In this study, a Maxwellian reactivity rate database is obtained by extracting double-differential cross-section data from the ENDF/B-VI database and then revising it. Monte Carlo and discrete ordinate methods are used to simulate transportation and fusion in D-T plasma and obtain the angular distribution of the neutron generation rate. The results of a preliminary numerical simulation in a simple model tell us that the difference between anisotropy and isotropy can reach an average of 4.6%. A temperature-corrected double-differential cross-section database and a numerical simulation method are developed to calculate the angular distribution of the neutron generation rate.