ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Surplus plutonium for power reactor fuel: What’s on offer
The Department of Energy has a plan for private companies to “dispose of surplus plutonium”—about 19.7 metric tons in both oxide and metal forms—by “making the materials available for advanced nuclear technologies.” A Surplus Plutonium Utilization Program request for applications (RFA) issued October 21 describes the plutonium on offer, and the “thresholds” prospective applicants must meet.
Lingrui Li, Zijia Zhao, Yanyun Ma, Zhe Ma, Jiang Lai, Yunliang Zhu
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 475-489
Technical Paper | doi.org/10.1080/15361055.2022.2049121
Articles are hosted by Taylor and Francis Online.
With the development of magnetic confinement fusion (MCF), it has become feasible for fusion energy to solve the future energy crisis. High-energy neutrons are produced during the fusion reaction. Neutron shielding and the tritium breeding ratio in MCF require a neutron source of high precision. In traditional methods, the neutron source is supposed to be isotropic. However, the double-differential cross sections for nuclear fusion given in the ENDF/B-VI database make it possible to calculate the neutron direction distribution in deuterium-tritium (D-T) plasma. In this study, a Maxwellian reactivity rate database is obtained by extracting double-differential cross-section data from the ENDF/B-VI database and then revising it. Monte Carlo and discrete ordinate methods are used to simulate transportation and fusion in D-T plasma and obtain the angular distribution of the neutron generation rate. The results of a preliminary numerical simulation in a simple model tell us that the difference between anisotropy and isotropy can reach an average of 4.6%. A temperature-corrected double-differential cross-section database and a numerical simulation method are developed to calculate the angular distribution of the neutron generation rate.