ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
F. N. Si, F. X. Chen, D. Wang
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 468-474
Technical Paper | doi.org/10.1080/15361055.2022.2049120
Articles are hosted by Taylor and Francis Online.
A backlighting system is developed for Z-pinch experiments that is composed of a pulsed X-ray generator (the backlighter), a scintillator, an optical module, and an intensified charge-coupled device (ICCD). By optimizing the geometrical layout, choosing the appropriate scintillator, and optimizing the parameters of the optical module, the system is successfully designed. The key properties of the system are theoretically calculated based on parameters of the X-rays and the scintillator. Calculation results of sensitivity show that the amount of scintillator fluorescence falls in the linear dynamic range of the ICCD. Spatial resolution is calculated to be 241 µm, which is mainly determined by the geometrical layout and the size of the X-ray focal spot. Temporal resolution is calculated to be 2.3 ns, which is mainly determined by the decay time of the scintillator. Calculation results indicate that the properties of the system meet the requirements of the Z-pinch capsule diagnostics. The system has been fabricated. Performance of the system is tested through static W wire experiments in the laboratory. Experimental results show that 250-µm W wire is clearly seen in the image when X-ray fluence is high, while 100-µm W wire cannot be seen.