ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Federico Pesamosca, Federico Felici, Stefano Coda, Cristian Galperti, the TCV Team
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 427-448
Technical Paper | doi.org/10.1080/15361055.2022.2043511
Articles are hosted by Taylor and Francis Online.
Elongated plasmas lead to improved performance in tokamaks but make the plasma prone to vertical instability, which requires active feedback control, a critical issue for future fusion reactors. Vertical control was optimized for the TCV tokamak by applying modern control theory to electromagnetic models for the plasma-vessel-coils dynamics. Two different optimal combinations of poloidal field coils for vertical control actuation are derived from linear plasma response models and used on different timescales for controlling the plasma vertical position. On fast timescales, the priority is input minimization, while on long timescales position control is designed to be compatible with shape control. A structured H-infinity design extending classical H-infinity to fixed-structure control systems was subsequently applied to obtain an optimized controller using all available coils for position control. Closed-loop performance improvement was demonstrated in dedicated TCV experiments, showing a reduction of input requirement for stabilizing the same plasma, thus reducing the risk of power supply saturation and consequent loss of vertical control. This novel algorithm is adaptable to different plasma equilibria as it is designed for model-based automated coil selection and controller tuning, thus avoiding extensive experimental gain scans when performing plasma discharges in TCV. The presented technique is general and can be applied to any present tokamak with independent coils or for the design of future tokamak magnetic control systems.