ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Ongena, A. M. Messiaen
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 453-466
Technical Paper | Plasma and Fusion Energy Physics - Present Status and Future | doi.org/10.13182/FST04-A512
Articles are hosted by Taylor and Francis Online.
The total amount of heating power coupled to the plasma Ptot and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product:NT = Ptot2/(3 Vol) = 3N2T2Vol/Ptot > (NT)ignition (1)with T [approximately equal to] 15 keVwhere = E/Ptot is the energy confinement time, E = 3NT Vol for an isothermal plasma with Ti = Te = T and a plasma volume Vol; N is the plasma density. The value T [approximately equal to] 15 keV corresponds to the minimum value of (NT)ignition as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by Ptot = POH + Padd where POH is the ohmic power and Padd is the additional heating due to neutral beam injection or R.F. heating. At ignition, the additional heating power must come completely from the energetic particles produced by the fusion reactions and we must have Ptot = P if we neglect the residual POH and the plasma losses by Bremsstrahlung (PBr [is proportional to] N2 T1/2).