ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Ji Hwan Lim, Minkyu Park
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 395-413
Technical Paper | doi.org/10.1080/15361055.2022.2036574
Articles are hosted by Taylor and Francis Online.
The effect of the hypervapotron (HV) fin angle on heat transfer was analyzed through visualization experiments and subcooled flow boiling experiments. An HV channel with a fin angle of 45 deg had a higher onset-of-nucleate-boiling heat flux than the typical HV channel. Additionally, as the heat flux increased, the bubble-sliding effect caused by the tilted fin was visualized, and it was observed that the vapor inside the fin was agglomerated by the sliding flow and driven into the side slot. When the fin angle of the typical HV channel was set as 0 deg, as the tilted angle of the fin increased, the heat transfer and critical heat flux (CHF) were improved owing to the secondary flow generated by the sliding effect. When the fin angle reached 45 deg, the CHF value was improved by 81% compared with the typical HV channel, which was the highest enhancement rate among the evaluated HV channels. However, when the fin angle exceeded 45 deg, the vapors aggregated more rapidly as the sliding velocity induced inside the fin increased. Furthermore, the two-phase pressure drop was analyzed through differential pressure measurements. The 45-deg tilted HV channel had a higher onset-of-significant-void heat flux value than all the other channels (HV, swirl, smooth, flat channels).