ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Ji Hwan Lim, Minkyu Park
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 395-413
Technical Paper | doi.org/10.1080/15361055.2022.2036574
Articles are hosted by Taylor and Francis Online.
The effect of the hypervapotron (HV) fin angle on heat transfer was analyzed through visualization experiments and subcooled flow boiling experiments. An HV channel with a fin angle of 45 deg had a higher onset-of-nucleate-boiling heat flux than the typical HV channel. Additionally, as the heat flux increased, the bubble-sliding effect caused by the tilted fin was visualized, and it was observed that the vapor inside the fin was agglomerated by the sliding flow and driven into the side slot. When the fin angle of the typical HV channel was set as 0 deg, as the tilted angle of the fin increased, the heat transfer and critical heat flux (CHF) were improved owing to the secondary flow generated by the sliding effect. When the fin angle reached 45 deg, the CHF value was improved by 81% compared with the typical HV channel, which was the highest enhancement rate among the evaluated HV channels. However, when the fin angle exceeded 45 deg, the vapors aggregated more rapidly as the sliding velocity induced inside the fin increased. Furthermore, the two-phase pressure drop was analyzed through differential pressure measurements. The 45-deg tilted HV channel had a higher onset-of-significant-void heat flux value than all the other channels (HV, swirl, smooth, flat channels).