ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ji Hwan Lim, Minkyu Park
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 395-413
Technical Paper | doi.org/10.1080/15361055.2022.2036574
Articles are hosted by Taylor and Francis Online.
The effect of the hypervapotron (HV) fin angle on heat transfer was analyzed through visualization experiments and subcooled flow boiling experiments. An HV channel with a fin angle of 45 deg had a higher onset-of-nucleate-boiling heat flux than the typical HV channel. Additionally, as the heat flux increased, the bubble-sliding effect caused by the tilted fin was visualized, and it was observed that the vapor inside the fin was agglomerated by the sliding flow and driven into the side slot. When the fin angle of the typical HV channel was set as 0 deg, as the tilted angle of the fin increased, the heat transfer and critical heat flux (CHF) were improved owing to the secondary flow generated by the sliding effect. When the fin angle reached 45 deg, the CHF value was improved by 81% compared with the typical HV channel, which was the highest enhancement rate among the evaluated HV channels. However, when the fin angle exceeded 45 deg, the vapors aggregated more rapidly as the sliding velocity induced inside the fin increased. Furthermore, the two-phase pressure drop was analyzed through differential pressure measurements. The 45-deg tilted HV channel had a higher onset-of-significant-void heat flux value than all the other channels (HV, swirl, smooth, flat channels).