ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bin Long, Ying Liu, Fulin Zeng, Jijun Zhou, Yuqian Yang
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 379-388
Technical Paper | doi.org/10.1080/15361055.2022.2033061
Articles are hosted by Taylor and Francis Online.
Edge-coherent mode (ECM) is one of the most promising modes in the tokamak fusion experiment, such as the Experimental Advanced Superconducting Tokamak (EAST). This paper presents an efficient convolution neural network model called NoiseNet for ECM recognition from the cross-power spectral data. NoiseNet suppresses the overfitting by applying noise in both the horizontal and vertical directions to the output of each layer of the convolution. And the improvement of the receptive field enables the convolution layer to better learn the difference between the ECM and the turbulence in the data. Experiments show that NoiseNet has better performance in ECM recognition with fewer parameters, and thus improved efficiency, than other major models, such as AlexNet, ResNet, and DenseNet. NoiseNet achieves a test accuracy of 93.94% on the ECM data sets. In addition, compared with the traditional method, this method does not depend on the empirical threshold and its generalization ability will improve with the increase in the amount of data.