ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Nemanja Aranđelović, Dušan Nikezić, Dragan Brajović, Uzahir Ramadani
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 369-378
Technical Paper | doi.org/10.1080/15361055.2022.2031690
Articles are hosted by Taylor and Francis Online.
Recently, the idea of injecting energy with electromagnetic radiation in order to heat the plasma to achieve controlled fusion has been abandoned. This initially favored mechanism was rejected because it has been shown that after a certain temperature the plasma glows and acts as a mirror that reflects electromagnetic radiation. For that reason, today the energy is injected into the plasma by electrons. For this purpose, pulses from several electron beam generators, based on a Marx generator, are synchronously fired into the plasma. In addition to economic problems, the biggest problem of this method is the appearance of jitter, i.e., pulses with a width of about 5 ns are not simply added up but propagated in time due to the impossibility of synchronizing simultaneous triggering of the multiple electronic generators. In order to avoid this, the possibility of monitoring the pulses from an individual electron beam generator for the purpose of online synchronization is investigated in this paper. The voltage pulse monitoring of the electron beam generator was measured by instruments with the fastest response—the electro-optical Kerr effect and a fast capacitive probe. The obtained results showed that the electro-optical Kerr response is somewhat faster but much more complicated, so the use of fast capacitive probes is recommended for practice.