ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Nemanja Aranđelović, Dušan Nikezić, Dragan Brajović, Uzahir Ramadani
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 369-378
Technical Paper | doi.org/10.1080/15361055.2022.2031690
Articles are hosted by Taylor and Francis Online.
Recently, the idea of injecting energy with electromagnetic radiation in order to heat the plasma to achieve controlled fusion has been abandoned. This initially favored mechanism was rejected because it has been shown that after a certain temperature the plasma glows and acts as a mirror that reflects electromagnetic radiation. For that reason, today the energy is injected into the plasma by electrons. For this purpose, pulses from several electron beam generators, based on a Marx generator, are synchronously fired into the plasma. In addition to economic problems, the biggest problem of this method is the appearance of jitter, i.e., pulses with a width of about 5 ns are not simply added up but propagated in time due to the impossibility of synchronizing simultaneous triggering of the multiple electronic generators. In order to avoid this, the possibility of monitoring the pulses from an individual electron beam generator for the purpose of online synchronization is investigated in this paper. The voltage pulse monitoring of the electron beam generator was measured by instruments with the fastest response—the electro-optical Kerr effect and a fast capacitive probe. The obtained results showed that the electro-optical Kerr response is somewhat faster but much more complicated, so the use of fast capacitive probes is recommended for practice.