ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Z. Zhao, C. D. Hu, Q. L. Cui, S. H. Song, Y. H. Xie, W. Liu
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 360-368
Technical Paper | doi.org/10.1080/15361055.2022.2031442
Articles are hosted by Taylor and Francis Online.
To explore the generation and extraction of negative ions for neutral beam injection, a prototype radio-frequency (RF)–driven negative ion source is designed at the test facility, which is under construction at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The control system provides beam pulse set up, remote supervision, plant control, timing synchronization, data management, and interlock and protection for the RF negative ion source. It plays an important role in negative ion source operation. The negative ion source prototype is currently in the development phase, involving more than 20 plant units. To match the requirements of control, data acquisition, and protection for different plant units, the plant control loop time is designed within the range of 10 μs to 100 ms, timing synchronization accuracy is 1 μs, the maximum sampling interval for data acquisition is 10 ms, the volume of data storage is tens of terabytes/year, and the interlock and protection response time is designed within the range of 10 μs to 100 ms. This paper describes the conceptual design of the control system for the prototype RF-driven negative ion source at the ASIPP, discusses the system requirements and the specifications for the control system, and shows the present status of system integration.