ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Xiaojun Ni, Songbo Han, Jian Ge, Jinxin Sun
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 352-359
Technical Paper | doi.org/10.1080/15361055.2021.2021723
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak device in China to bridge the gaps between ITER and the DEMOnstration nuclear fusion reactor (DEMO). The CFETR vacuum vessel (VV) was designed to remove nuclear heating, provide safety shielding, and maintain a high-quality vacuum environment. Seismic load is considered one of the most relevant accidental events affecting the structural integrity of the VV. In order to investigate the resistance of the CFETR VV against seismic load, finite element models of the VV were built. In this paper, equivalent static and response spectrum analyses were carried out to calculate displacements and stress fields aiming to check the response of the CFETR VV against a foreseen seismic load. The resulting stresses are lower than the allowable limits and satisfy the design requirements.