ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Xiaojun Ni, Songbo Han, Jian Ge, Jinxin Sun
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 352-359
Technical Paper | doi.org/10.1080/15361055.2021.2021723
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak device in China to bridge the gaps between ITER and the DEMOnstration nuclear fusion reactor (DEMO). The CFETR vacuum vessel (VV) was designed to remove nuclear heating, provide safety shielding, and maintain a high-quality vacuum environment. Seismic load is considered one of the most relevant accidental events affecting the structural integrity of the VV. In order to investigate the resistance of the CFETR VV against seismic load, finite element models of the VV were built. In this paper, equivalent static and response spectrum analyses were carried out to calculate displacements and stress fields aiming to check the response of the CFETR VV against a foreseen seismic load. The resulting stresses are lower than the allowable limits and satisfy the design requirements.