ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Y. Li, C. D. Hu, Y. Z. Zhao, Q. L. Cui, X. L. Shu, Y. H. Xie, W. Liu
Fusion Science and Technology | Volume 78 | Number 4 | May 2022 | Pages 330-339
Technical Paper | doi.org/10.1080/15361055.2021.1997044
Articles are hosted by Taylor and Francis Online.
The timing synchronization system (TSS) in a radio-frequency–driven negative ion–based neutral beam injection system (NNBIS) is an important part of a negative ion–based neutral beam injection control system. In order to ensure the orderly conduct of experiments and the integrity of experimental data, the TSS needs to complete the corresponding timing synchronization function. There are two aspects to control of the NNBIS: controlling the synchronization of NNBIS subsystems within a certain precision and ensuring correct timing and amplitude output during the experiment. This paper presents the design and development of the TSS in the NNBIS, aiming at the characteristics of the IEEE 1588-2019, “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” clock synchronization protocol to achieve the demands of clock synchronization at a submicrosecond level, synchronously triggering other subsystems through the network trigger and hardware trigger. The TSS successfully implemented synchronization accuracy in less than 1 μs, and the network trigger is more efficient than the hardware trigger, which is about 80 μs faster. The TSS meets the requirements of timing synchronization accuracy of the NNBIS.