ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alex Aimetta, Nicolò Abrate, Sandra Dulla, Antonio Froio
Fusion Science and Technology | Volume 78 | Number 4 | May 2022 | Pages 275-290
Technical Paper | doi.org/10.1080/15361055.2021.2003151
Articles are hosted by Taylor and Francis Online.
Neutronic modeling of fusion machines requires a detailed representation of their complex geometry in order to properly evaluate various parameters of interest such as energy deposition and tritium production in the breeding blanket. In this work, the neutronics of the Affordable, Robust, Compact (ARC) fusion reactor is modeled with the Monte Carlo particle transport code Serpent developed at VTT Technical Research Centre of Finland as an alternative to other, more established, tools in the fusion community such as the Monte Carlo N-Particle Transport (MCNP) code. The tritium breeding ratio (TBR) and the power deposited by neutrons and photons inside the breeding blanket of ARC are evaluated. Considerations related to activation of materials and to neutron shielding are not taken into account. As a first step, estimations have been obtained adopting a spatially uniform neutron source inside the plasma chamber. A second set of calculations has been performed considering a nonuniform source that takes into account a more realistic neutron generation distribution, with higher values at the center of the plasma and reduced rates toward the plasma edge. The results obtained with Serpent have been compared with available literature values for the TBR and the power deposition, confirming that Serpent can be considered a suitable alternative code for the neutronic analysis of fusion reactors like ARC. The TBR presented in this paper (1.0853) is in good agreement with the value found in the literature, with a relative difference of 0.49%. The total power deposition has a maximum relative difference of 12% for the components of interest in the present work.