ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Xin Xiao, Henry T. Sessions, Robert Rabun
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 253-257
Tecnical Paper | doi.org/10.1080/15361055.2021.1982331
Articles are hosted by Taylor and Francis Online.
Deuterium-tritium fusion is the easiest nuclear fusion reaction among known fusion reactions. Since tritium is extremely rare, it is artificially produced by irradiating lithium metal. The separation, isolation, and storage of the tritium isotope has been a major focus of the Savannah River Site (SRS) for many decades. Thermal diffusion, fractional absorption, and cryogenic distillation have all been used in the past, and each has significant operational and safety challenges. A process known as the Thermal Cycling Absorption Process (TCAP) was invented at SRS, and because of its overwhelming advantages in safety, efficiency, size, and reduced tritium inventory, it has replaced all other hydrogen isotope separation processes at SRS. The working principles and current development of hydrogen isotope separation using TCAP at SRS are explained as a potential advanced isotope separation process for the fusion fuel cycle.