ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Mishra, R. Gangradey, P. Nayak, S. Mukherjee
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 211-219
Technical Paper | doi.org/10.1080/15361055.2021.1985905
Articles are hosted by Taylor and Francis Online.
Based on the ideal gas gun theory (IGT) approximation, an analytical study of solid hydrogen pellet motion in a gas gun–type pellet injector has been performed. A parametric investigation has been conducted to study the pellet speed dependence on the gun characteristics and the propellant conditions. The calculations have been verified by applying various experimental data reported from the literature. Experimental results are within 70% to 90% of the ideal IGT and are in line with global predictions. Calculations indicate that the speed of the pellet has a strong dependence on the propellant pressure and its mass, and a weak dependence on the length of the gun barrel. In addition, the effects of shock waves due to the sudden opening of the propellant valve and some nonideal effects, such as the effect of friction at the propellant pellet–wall interface, have been studied. The results of the calculations have been verified by applying them to the experimental results.