ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Mishra, R. Gangradey, P. Nayak, S. Mukherjee
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 211-219
Technical Paper | doi.org/10.1080/15361055.2021.1985905
Articles are hosted by Taylor and Francis Online.
Based on the ideal gas gun theory (IGT) approximation, an analytical study of solid hydrogen pellet motion in a gas gun–type pellet injector has been performed. A parametric investigation has been conducted to study the pellet speed dependence on the gun characteristics and the propellant conditions. The calculations have been verified by applying various experimental data reported from the literature. Experimental results are within 70% to 90% of the ideal IGT and are in line with global predictions. Calculations indicate that the speed of the pellet has a strong dependence on the propellant pressure and its mass, and a weak dependence on the length of the gun barrel. In addition, the effects of shock waves due to the sudden opening of the propellant valve and some nonideal effects, such as the effect of friction at the propellant pellet–wall interface, have been studied. The results of the calculations have been verified by applying them to the experimental results.